Anomalous layer-dependent photoluminescence spectra of supertwisted spiral WS2

Opt Express. 2024 Mar 11;32(6):10419-10428. doi: 10.1364/OE.516177.

Abstract

Twisted stacking of two-dimensional materials with broken inversion symmetry, such as spiral MoTe2 nanopyramids and supertwisted spiral WS2, emerge extremely strong second- and third-harmonic generation. Unlike well-studied nonlinear optical effects in these newly synthesized layered materials, photoluminescence (PL) spectra and exciton information involving their optoelectronic applications remain unknown. Here, we report layer- and power-dependent PL spectra of the supertwisted spiral WS2. The anomalous layer-dependent PL evolutions that PL intensity almost linearly increases with the rise of layer thickness have been determined. Furthermore, from the power-dependent spectra, we find the power exponents of the supertwisted spiral WS2 are smaller than 1, while those of the conventional multilayer WS2 are bigger than 1. These two abnormal phenomena indicate the enlarged interlayer spacing and the decoupling interlayer interaction in the supertwisted spiral WS2. These observations provide insight into PL features in the supertwisted spiral materials and may pave the way for further optoelectronic devices based on the twisted stacking materials.