Hybrid integrated thin-film lithium niobate-silicon nitride electro-optical phased array incorporating silicon nitride grating antenna for two-dimensional beam steering

Opt Express. 2024 Mar 11;32(6):9171-9183. doi: 10.1364/OE.518961.

Abstract

This study proposes a solid-state two-dimensional beam-steering device based on an electro-optical phased array (EOPA) in thin-film lithium niobate (TFLN) and silicon nitride (SiN) hybrid platforms, thereby eliminating the requirement for the direct etching of TFLN. Electro-optic (EO) phase modulator array comprises cascaded multimode interference couplers with an SiN strip-loaded TFLN configuration, which is designed and fabricated via i-line photolithography. Each EO modulator element with an interaction region length of 1.56 cm consumed a minimum power of 3.2 pJ/π under a half-wave voltage of 3.64 V and had an estimated modulation speed of 1.2 GHz. Subsequently, an SiN dispersive antenna with a waveguide grating was tethered to the modulator array to form an EOPA, facilitating the out-of-plane radiation of highly defined near-infrared beams. A prepared EOPA utilized EO phase control and wavelength tuning near 1550 nm to achieve a field-of-view of 22° × 5° in the horizontal and vertical directions. The proposed hybrid integrated platform can potentially facilitate low-power and high-speed beam steering.