Highly precise FBG wavelength demodulation method with strong multiplexing ability and positioning function based on time-domain detection

Opt Express. 2024 Mar 25;32(7):12708-12723. doi: 10.1364/OE.510396.

Abstract

Based on the theory of the microwave photonic filter (MPF), to our knowledge, a novel fiber Bragg grating (FBG) wavelength demodulation method based on time-domain detection is proposed. The method uses VNA (vector network analyzer) to measure the S21 parameter of the sensor system, and converts them to the time-domain through inverse discrete Fourier transform (IDFT), The wavelength demodulation and positioning of FBG can be realized by measuring the amplitude and position of the time-domain peak. In order to improve the number of FBG multiplexes, a method is proposed to eliminate the effect of spectrum overlap by normalization in the case of two FBGs and three FBGs. The experimental results show that the temperature sensitivity is 0.00503 RAC/°C, the positioning resolution of the system is 1.25 cm, and the limit of the wavelength difference between two FBGs allowed by the system is 0.25 nm. This method has the advantages of high demodulation precision, strong multiplexing ability and high precision positioning, and has broad application prospects.