Compatible camouflage for dual-band guided-laser radar and infrared via a metamaterial perfect absorber

Opt Express. 2024 Mar 25;32(7):11221-11240. doi: 10.1364/OE.518073.

Abstract

Laser-guided detector and infrared detection have attracted increasing attention in a wide range of research fields, including multispectral detection, radiative cooling, and thermal management. Previously reported absorbers presented shortcomings of lacking either tunability or compatibility. In this study, a metamaterial perfect absorber based on a Helmholtz resonator and fractal structure is proposed, which realizes tunable perfect absorptivity (α 1.06μ m >0.99,α 10.6μ m >0.99) of guided-laser radar dual operating bands (1.06 µm and 10.6 µm) and a low infrared average emissivity (ε¯3-5μ m =0.03,ε¯8-14μ m =0.31) in two atmospheric windows for compatible camouflage. The proposed perfect absorber provides a dynamically tunable absorptivity without structural changes and can be applied to optical communication, military stealth or protection, and electromagnetic detection.