Surface modification of Co3O4 nanosheets through Cd-doping for enhanced CO sensing performance

Mikrochim Acta. 2024 Apr 3;191(5):234. doi: 10.1007/s00604-024-06326-z.

Abstract

The detection of hazardous CO gas is an important research content in the domain of the Internet of Things (IoT). Herein, we introduced a facile metal-organic frameworks (MOFs)-templated strategy to synthesize Cd-doped Co3O4 nanosheets (Cd-Co3O4 NSs) aimed at boosting the CO-sensing performance. The synthesized Cd-Co3O4 NSs feature a multihole nanomeshes structure and a large specific surface area (106.579 m2·g-1), which endows the sensing materials with favorable gas diffusion and interaction ability. Furthermore, compared with unadulterated Co3O4, the 2 mol % Cd-doped Co3O4 (2% Cd-Co3O4) sensor exhibits enhanced sensitivity (244%) to 100 ppm CO at 200 °C and a comparatively low experimental limit of detection (0.5 ppm/experimental value). The 2% Cd-Co3O4 NSs show good selectivity, reproducibility, and long-term stability. The improved CO sensitivity signal is probably owing to the stable nanomeshes construction, high surface area, and rich oxygen vacancies caused by cadmium doping. This study presents a facile avenue to promote the sensing performance of p-type metal oxide semiconductors by enhancing the surface activity of Co3O4 combined with morphology control and component regulation.

Keywords: Carbon monoxide; Co3O4; Gas sensor; Nanosheet doping; Nanosheets.