Barium phosphidoboranes and related calcium complexes

Dalton Trans. 2024 Apr 23;53(16):6892-6905. doi: 10.1039/d4dt00487f.

Abstract

The attempted synthesis of [{Carb}BaPPh2] (1) showed this barium-phosphide and its thf adducts, 1·thf and 1·(thf)2, to be unstable in solution. Our strategy to circumvent the fragility of these compounds involved the use of phosphinoboranes HPPh2·BH3 and HPPh2·B(C6F5)3 instead of HPPh2. This allowed for the synthesis of [{Carb}Ae{PPh2·BH3}] (Ae = Ba, 2; Ca, 3), [{Carb}Ca{(H3B)2PPh2}·(thf)] (4), [{Carb}Ba{PPh2·B(C6F5)3}] (5), [{Carb}Ba{O(B(C6F5)3)CH2CH2CH2CH2PPh2}·thf] (6), [Ba{O(B(C6F5)3)CH2CH2CH2CH2PPh2}2·(thf)1.5] (7) and [Ba{PPh2·B(C6F5)3}2·(thp)2] (8) that were characterised by multinuclear NMR spectroscopy (thp = tetrahydropyran). The molecular structures of 4, 6 and 8 were validated by X-ray diffraction crystallography, which revealed the presence of Ba⋯F stabilizing interactions (ca. 9 kcal mol-1) in the fluorine-containing compounds. Compounds 6 and 7 were obtained upon ring-opening of thf by their respective precursors, 5 and the in situ prepared [Ba{PPh2·B(C6F5)3}2]n. By contrast, thp does not undergo ring-opening under the same conditions but affords clean formation of 8. DFT analysis did not highlight any specific weakness of the Ba-P bond in 1·(thf)2. The instability of this compound is instead thought to stem from the high energy of its HOMO, which contains the non-conjugated P lone pair and features significant nucleophilic reactivity.