Metal Valence State Modulation Strategy to Design Core@shell Hollow Carbon Microspheres@MoSe2/MoOx Multicomponent Composites for Anti-Corrosion and Microwave Absorption

Small. 2024 Apr 2:e2311312. doi: 10.1002/smll.202311312. Online ahead of print.

Abstract

The exploitation of multicomponent composites (MCCs) has become the main pathway for obtaining advanced microwave absorption materials (MAMs). Herein, a metal valence state modulation strategy is proposed to tune the electromagnetic (EM) parameters and improve microwave absorption performances. Core@shell hollow carbon microspheres@MoSe2 and hollow carbon microspheres@MoSe2/MoOx MCCs with various mixed-valence states content are well-designed and produced by a simple hydrothermal reaction or/and heat treatment process. The results reveal that the thermal treatment of hollow carbon microspheres@MoSe2 in Ar and Ar/H2 leads to the in situ formation of MoOx and multivalence state, respectively, and the enhanced content of Mo4+ in the designed MCCs greatly boosts their impedance matching characteristics, polarization, and conduction loss capacities, which lead to their evidently improved EM wave absorption properties. Amongst, the as-prepared hollow carbon microspheres@MoSe2/MoOx MCCs achieve an effective absorption bandwidth of 5.80 GHz under a matching thickness of 1.97 mm and minimum reflection loss of -21.49 dB. Therefore, this work offers a simple and universal method to fabricate core@shell hollow carbon microspheres@MoSe2/MoOx MCCs, and a novel and feasible metal valence state modulation strategy is proposed to develop high-efficiency MAMs.

Keywords: core@shell structure; hollow carbon microspheres@MoSe2/MoOx; improved conduction and polarization loss; metal valence state modulation; microwave absorption.