Environmental impacts of circularity strategies for social distancing plastic shields made of polymethyl methacrylate in the United States

Waste Manag Res. 2024 Apr 2:734242X241237102. doi: 10.1177/0734242X241237102. Online ahead of print.

Abstract

One application of plastics that grew during the COVID-19 pandemic is for social distancing plastic shields, or protective barriers, made from polymethyl methacrylate (PMMA) such as transparent face guards. Although available for other applications, end-of-life impacts for barriers are currently lacking in the literature, and there is a need to fill in this gap to guide decisions. This study evaluated the end-of-life environmental impacts of PMMA barriers in the United States by using life cycle assessment. We evaluated five strategies including landfilling, waste-to-energy, mechanical recycling, chemical recycling and reuse. Data were sourced from literature and various life cycle inventory databases. The Tool for Reduction and Assessment of Chemicals and Other Environmental Impacts (TRACI) was used as the life cycle impact assessment method. Landfilling exhibited the highest impact in all indicators and reuse demonstrated optimal results for global warming potential. A scenario analysis was conducted to explore a combination of strategies, revealing that the most promising approach involved a mix of 40% reuse, 20% mechanical recycling and 40% chemical recycling. Circular economy recommendations are proposed for managing these sources of plastic waste in the United States.

Keywords: Plastics; circular economy; end-of-life; life cycle assessment; recycling; waste.