Construction and characterization of a hypervesiculation strain of Escherichia coli Nissle 1917

PLoS One. 2024 Apr 2;19(4):e0301613. doi: 10.1371/journal.pone.0301613. eCollection 2024.

Abstract

Outer membrane vesicles (OMVs) are produced by Gram-negative bacteria and deliver microbial molecules to distant target cells in a host. OMVs secreted by probiotic probiotic strain Escherichia coli Nissle 1917 (EcN) have been reported to induce an immune response. In this study, we aimed to increase the OMV production of EcN. The double gene knockout of mlaE and nlpI was conducted in EcN because the ΔmlaEΔnlpI of experimental strain E. coli K12 showed the highest OMV production in our previous report. The ΔmlaEΔnlpI of EcN showed approximately 8 times higher OMV production compared with the parental (wild-type) strain. Quick-freeze, deep-etch replica electron microscopy revealed that plasmolysis occurred in the elongated ΔmlaEΔnlpI cells and the peptidoglycan (PG) had numerous holes. While these phenomena are similar to the findings for the ΔmlaEΔnlpI of K12, there were more PG holes in the ΔmlaEΔnlpI of EcN than the K12 strain, which were observed not only at the tip of the long axis but also in the whole PG structure. Further analysis clarified that the viability of ΔmlaEΔnlpI of EcN decreased compared with that of the wild-type. Although the amount of PG in ΔmlaEΔnlpI cells was about half of that in wild-type, the components of amino acids in PG did not change in ΔmlaEΔnlpI. Although the viability decreased compared to the wild-type, the ΔmlaEΔnlpI grew in normal culture conditions. The hypervesiculation strain constructed here is expected to be used as an enhanced probiotic strain.

MeSH terms

  • Cell Wall / metabolism
  • Escherichia coli / metabolism
  • Escherichia coli Proteins* / genetics
  • Probiotics* / metabolism

Substances

  • Escherichia coli Proteins

Grants and funding

This work was supported by a Grant-in-Aid for Scientific Research (C; No. 19K05170) from the Japan Society for the Promotion of Science, and Institute for Fermentation, Osaka, to YO. This work was also supported by the Osaka City University (OCU) Strategic Research Grant 2017 for top priority researches, and JST CREST (Grant Number JPMJCR19S5) to MM. There was no additional external funding received for this study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.