Oligomeric Amyloid-β and Tau Alter Cell Adhesion Properties and Induce Inflammatory Responses in Cerebral Endothelial Cells Through the RhoA/ROCK Pathway

Mol Neurobiol. 2024 Apr 2. doi: 10.1007/s12035-024-04138-z. Online ahead of print.

Abstract

Dysfunction of cerebral endothelial cells (CECs) has been implicated in the pathology of Alzheimer's disease (AD). Despite evidence showing cytotoxic effects of oligomeric amyloid-β (oAβ) and Tau (oTau) in the central nervous system, their direct effects on CECs have not been fully investigated. In this study, we examined the direct effects of oAβ, oTau, and their combination on cell adhesion properties and inflammatory responses in CECs. We found that both oAβ and oTau increased cell stiffness, as well as the p-selectin/Sialyl-LewisX (sLeX) bonding-mediated membrane tether force and probability of adhesion in CECs. Consistent with these biomechanical alterations, treatments with oAβ or oTau also increased actin polymerization and the expression of p-selectin at the cell surface. These toxic oligomeric peptides also triggered inflammatory responses, including upregulations of p-NF-kB p65, IL-1β, and TNF-α. In addition, they rapidly activated the RhoA/ROCK pathway. These biochemical and biomechanical changes were further enhanced by the treatment with the combination of oAβ and oTau, which were significantly suppressed by Fasudil, a specific inhibitor for the RhoA/ROCK pathway. In conclusion, our data suggest that oAβ, oTau, and their combination triggered subcellular mechanical alterations and inflammatory responses in CECs through the RhoA/ROCK pathway.

Keywords: Cerebral endothelial cells; Membrane mechanics; Neuroinflammation; RhoA/ROCK inhibitor; RhoA/ROCK pathway; oAβ and oTau.