Polarized vortex Smith-Purcell radiation with cascaded metasurfaces

Opt Lett. 2024 Apr 1;49(7):1840-1843. doi: 10.1364/OL.503537.

Abstract

We introduce the concept of polarized vortex Smith-Purcell radiation by the interaction of an electron beam and cascaded metasurfaces. The spin and orbital angular momenta of Smith-Purcell radiation are determined by the cascaded metasurface that consists of a grating and a phase gradient metasurface. The grating converts the electron beam radiation into the desired polarized light, while the phase gradient metasurface generates the vortex light. Furthermore, the vortex Smith-Purcell radiation with linear and circular polarizations can be achieved by the various cascaded metasurfaces. In particular, the conversion of chirality in the Smith-Purcell radiation carrying circular polarization is accompanied by the alteration of positive and negative topological charges. This work paves the way for generating polarized vortex electron radiation and is beneficial to promote the development of free-electron-driven devices.