Revealing the Nanoscopic Corrosive Degradation Mechanism of Nickel-Rich Layered Oxide Cathodes at Low State-of-Charge Levels: Corrosion Cracking and Pitting

ACS Nano. 2024 Apr 16;18(15):10566-10581. doi: 10.1021/acsnano.4c00202. Epub 2024 Apr 1.

Abstract

Ni-rich layered oxides have received significant attention as promising cathode materials for Li-ion batteries due to their high reversible capacity. However, intergranular and intragranular cracks form at high state-of-charge (SOC) levels exceeding 4.2 V (vs. Li/Li+), representing a prominent failure mechanism of Ni-rich layered oxides. The nanoscale crack formation at high SOC levels is attributed to a significant volume change resulting from a phase transition between the H2 and H3 phases. Herein, in contrast to the electrochemical crack formation at high SOC levels, another mechanism of chemical crack and pit formation on a nanoscale is directly evidenced in fully lithiated Ni-rich layered oxides (low SOC levels). This mechanism is associated with intergranular stress corrosion cracking, driven by chemical corrosion at elevated temperatures. The nanoscopic chemical corrosion behavior of Ni-rich layered oxides during aging at elevated temperatures is investigated using high-resolution transmission electron microscopy, revealing that microcracks can develop through two distinct mechanisms: electrochemical cycling and chemical corrosion. Notably, chemical corrosion cracks can occur even in a fully discharged state (low SOC levels), whereas electrochemical cracks are observed only at high SOC levels. This finding provides a comprehensive understanding of the complex failure mechanisms of Ni-rich layered oxides and provides an opportunity to improve their electrochemical performance.

Keywords: Ni-rich layered oxides; aging behavior; chemical corrosion; nanoscale crack formation; nanoscopic degradation.