Photothermal Mineralization of Polyolefin Microplastics via TiO2 Hierarchical Porous Layer-Based Semiwetting Air-Plastic-Solid Interfaces

Adv Mater. 2024 Mar 30:e2400681. doi: 10.1002/adma.202400681. Online ahead of print.

Abstract

Photo-mineralization of microplastics under mild conditions has emerged as a promising solution to plastic waste disposal. However, the inadequate contact between oxygen, water-insoluble polyolefin microplastics, and photocatalysts remains a critical issue. In this study, a TiO2 hierarchical porous layer (TiO2-HPL) photocatalyst is presented to establish air-plastic-solid triphase interfaces for the photothermal mineralization of polyolefins. The wettability of the TiO2-HPL-based triphase interface is finely controlled from plastophobic to plastophilic. High-resolution imaging and finite element simulation demonstrate the significance of a semiwetting state in achieving multidirectional oxygen diffusion through the hierarchical pore structure while maintaining sufficient contact between the plastic phase and photocatalysts. For low-density polyethylene, the TiO2-HPL achieves a photothermal mineralization rate of 5.63 mmol g-1 h-1 and a conversion of 26.3% after 20 h of continuous irradiation. Additionally, the triphase photocatalytic system with semiwetting gas-plastic-solid interfaces shows good universality for various polyolefin reagents and products, illustrating its potential in achieving efficient photothermal mineralization of non-degradable microplastics.

Keywords: microplastic; photocatalysis; titanium oxide; triphase interface; wettability.