Multistimuli-Responsive Shape-Memory Composites with a Water-Assisted Self-Healing Function Based on Sodium Carboxymethyl Cellulose/Poly(vinyl alcohol)/MXene

ACS Appl Mater Interfaces. 2024 Apr 10;16(14):17981-17991. doi: 10.1021/acsami.4c00569. Epub 2024 Mar 29.

Abstract

Recent advancements in artificial intelligence have propelled the development of shape-memory polymers (SMPs) with sophisticated, environment-sensitive capabilities. Despite the progress, most of the existing SMPs are limited to responding to a single stimulus and show poor functionality, which has severely hindered their future applications. Herein, we report a high-performance multistimuli-responsive shape-memory and self-healing composite film fabricated by embedding MXene nanosheets into a conventional shape-memory sodium carboxymethyl cellulose (CMC) and poly(vinyl alcohol) (PVA) matrix. The incorporation of photothermal MXene nanosheets not only enhances the composite films' mechanical strength but also provides efficient solar-thermal conversion and robust light-actuated shape-memory properties. The resultant composite films exhibit an exceptional shape-memory response to various stimuli including heat, light, and water. Meanwhile, the interfacial interactions can be modulated by adjusting the MXene content, thereby enabling precise manipulation of the shape-memory performance. Moreover, thanks to the intrinsic hydrophilicity of the components and the unique physically cross-linked network, the composite films also demonstrate an effective water-assisted self-healing capability with an impressive healing efficiency of 85.7%. This work offers insights into the development of multifunctional, multistimuli-responsive shape-memory composites, opening up new possibilities for future applications in smart technologies.

Keywords: MXene; composites; multistimuli responsiveness; self-healing; shape memory.