Targeting bonding protocols to increase the bond between acrylic resin or 3D printed denture bases and prefabricated or 3D printed denture teeth

J Prosthet Dent. 2024 Mar 28:S0022-3913(24)00152-5. doi: 10.1016/j.prosdent.2024.02.027. Online ahead of print.

Abstract

Statement of problem: The difference in chemical composition between denture base resin and denture teeth requires the development of bonding protocols that increase the union between the materials.

Purpose: The purpose of this in vitro study was to evaluate the impact of different bonding protocols on the bond between heat-polymerized and 3-dimensionally (3D) printed acrylic resin denture bases and acrylic resin prefabricated and 3D printed artificial teeth.

Material and methods: Four types of artificial teeth were evaluated: prefabricated acrylic resin (VITA MFT) and 3D printed (Cosmos TEMP, PRIZMA 3D Bio Denture, and PrintaX AA Temp) bonded to 20×24-mm cylinders of heat-polymerized (VipiWave) and 3D printed (Cosmos Denture, PRIZMA 3D Bio Denture, and PrintaX BB Base) denture bases. Three bonding protocols were tested (n=20): mechanical retention with perforation + monomer (PT1), mechanical retention with perforation + airborne-particle abrasion with 50-µm aluminum oxide + monomer (PT2), and mechanical retention with perforation + Palabond (PT3). Half of the specimens in each group received 10 000 thermocycles and were then subjected to the bonding test at a crosshead speed of 1 mm/minute. The failure type was analyzed and scanning electron micrographs made. Additionally, surface roughness (Ra) and wettability (degree) were analyzed (n=15). ANOVA was used to evaluate the effect of the bonding protocol, and the Student t test was applied to compare the experimental groups with the control (α=.05). For type of failure, a descriptive analysis was carried out using absolute and relative frequency. The Kruskal-Wallis test was used to evaluate the surface changes (α=.05).

Results: Among the protocols, PT3 with in Yller and PT2 with Prizma had the highest bond strengths of the heat-polymerized denture base and 3D printed teeth (P<.05). When comparing the experimental groups with the control, PT3 and PT2 had greater union with the 3D printed denture base + 3D printed teeth (in Yller), with no difference from the heat-polymerized denture base + prefabricated teeth in acrylic resin. The treatment of the 3D printed tooth surfaces affected the surface roughness of Prizma (P<.001) and wettability (P<.001).

Conclusions: To increase the bond between Yller 3D printed denture base + 3D printed teeth, a bonding protocol including mechanical retention with perforation + Palabond or mechanical retention with perforation + airborne-particle abrasion with aluminum oxide + monomer is indicated. For the other materials tested, further bonding protocols need to be investigated.