Single-cell transcriptomic analysis of radiation-induced lung injury in rat

Biomol Biomed. 2024 Mar 29. doi: 10.17305/bb.2024.10357. Online ahead of print.

Abstract

Radiation-induced lung injury (RILI) frequently occurs as a complication following radiotherapy for chest tumors like lung and breast cancers. However, the precise underlying mechanisms of RILI remain unclear. In this study, we generated RILI models in rats treated with a single dose of 20 Gy and examined lung tissues by single-cell RNA sequencing (scRNA-seq) 2 weeks post-radiation. Analysis of lung tissues revealed 18 major cell populations, indicating an increase in cell-cell communication following radiation exposure. Neutrophils, macrophages, and monocytes displayed distinct subpopulations and uncovered potential for pro-inflammatory effects. Additionally, endothelial cells exhibited a highly inflammatory profile and the potential for reactive oxygen species (ROS) production. Furthermore, smooth muscle cells (SMC) showed a high propensity for extracellular matrix (ECM) deposition. Our findings broaden the current understanding of RILI and highlight potential avenues for further investigation and clinical applications.