Charged Exciton Generation by Curvature-Induced Band Gap Fluctuations in Structurally Disordered Two-Dimensional Semiconductors

ACS Nano. 2024 Apr 9;18(14):10156-10164. doi: 10.1021/acsnano.4c00026. Epub 2024 Mar 29.

Abstract

Curvature is a general factor for various two-dimensional (2D) materials due to their flexibility, which is not yet fully unveiled to control their physical properties. In particular, the effect of structural disorder with random curvature formation on excitons in 2D semiconductors is not fully understood. Here, the correlation between structural disorder and exciton formation in monolayer MoS2 on SiO2 was investigated by using photoluminescence (PL) and Raman spectroscopy. We found that the curvature-induced charge localization along with band gap fluctuations aid the formation of the localized charged excitons (such as trions). In the substrate-supported region, the trion population is enhanced by a localized charge due to the microscopic random bending strain, while the trion is suppressed in the suspended region which exhibits negligible bending strain, anomalously even though the dielectric screening effect is lower than that of the supported region. The redistribution of each exciton by the bending strain leads to a huge variation (∼100-fold) in PL intensity between the supported and suspended regions, which cannot be fully comprehended by external potential disorders such as a random distribution of charged impurities. The peak position of PL in MoS2/SiO2 is inversely proportional to the Raman peak position of E12g, indicating that the bending strain is correlated with PL. The supported regions exhibit an indirect portion that was not shown in the suspended regions or atomically flat substrates. The understanding of the structural disorder effect on excitons provides a fundamental path for optoelectronics and strain engineering of 2D semiconductors.

Keywords: 2D semiconductors; curvature; exciton; photoluminescence; strain; structural disorder.