Exploring the hidden environmental pollution of microplastics derived from bioplastics: A review

Chemosphere. 2024 May:355:141773. doi: 10.1016/j.chemosphere.2024.141773. Epub 2024 Mar 26.

Abstract

Bioplastics might be an ecofriendly alternative to traditional plastics. However, recent studies have emphasized that even bioplastics can end up becoming micro- and nano-plastics due to their degradation under ambient environmental conditions. Hence, there is an urgent need to assess the hidden environmental pollution caused by bioplastics. However, little is known about the evolutionary trends of bibliographic data, degradation pathways, formation, and toxicity of micro- and nano-scaled bioplastics originating from biodegradable polymers such as polylactic acid, polyhydroxyalkanoates, and starch-based plastics. Therefore, the prime objective of the current review was to investigate evolutionary trends and the latest advancements in the field of micro-bioplastic pollution. Additionally, it aims to confront the limitations of existing research on microplastic pollution derived from the degradation of bioplastic wastes, and to understand what is needed in future research. The literature survey revealed that research focusing on micro- and nano-bioplastics has begun since 2012. This review identifies novel insights into microbioplastics formation through diverse degradation pathways, including photo-oxidation, ozone-induced degradation, mechanochemical degradation, biodegradation, thermal, and catalytic degradation. Critical research gaps are identified, including defining optimal environmental conditions for complete degradation of diverse bioplastics, exploring micro- and nano-bioplastics formation in natural environments, investigating the global occurrence and distribution of these particles in diverse ecosystems, assessing toxic substances released during bioplastics degradation, and bridging the disparity between laboratory studies and real-world applications. By identifying new trends and knowledge gaps, this study lays the groundwork for future investigations and sustainable solutions in the realm of sustainable management of bioplastic wastes.

Keywords: Biodegradation; Mechanochemical degradation; Micro-bioplastics; Nano-bioplastics; Photo-oxidation.

Publication types

  • Review

MeSH terms

  • Biodegradation, Environmental
  • Ecosystem
  • Environmental Pollution
  • Microplastics
  • Plastics* / chemistry
  • Polyhydroxyalkanoates*
  • Starch

Substances

  • Plastics
  • Microplastics
  • Polyhydroxyalkanoates
  • Starch