Direct solar energy conversion on zinc-air battery

Proc Natl Acad Sci U S A. 2024 Apr 2;121(14):e2318777121. doi: 10.1073/pnas.2318777121. Epub 2024 Mar 28.

Abstract

A concept of solar energy convertible zinc-air battery (SZAB) is demonstrated through rational design of an electrode coupled with multifunction. The multifunctional electrode is fabricated using nitrogen-substituted graphdiyne (N-GDY) with large π-conjugated carbonous network, which can work as photoresponsive bifunctional electrocatalyst, enabling a sunlight-promoted process through efficient injection of photoelectrons into the conduction band of N-GDY. SZAB enables direct conversion and storage of solar energy during the charging process. Such a battery exhibits a lowered charge voltage under illumination, corresponding to a high energy efficiency of 90.4% and electric energy saving of 30.3%. The battery can display a power conversion efficiency as high as 1.02%. Density functional theory calculations reveal that the photopromoted oxygen evolution reaction kinetics originates from the transition from the alkyne bonds to double bonds caused by the transfer of excited electrons, which changes the position of highest occupied molecular orbital and lowest unoccupied molecular orbital, thus greatly promoting the formation of intermediates to the conversion process. Our findings provide conceptual and experimental confirmation that batteries are charged directly from solar energy without the external solar cells, providing a way to manufacture future energy devices.

Keywords: graphdiyne; photocathode; solar energy conversion and storage; zinc–air batteries.