Hybrid Polymer Salogels for Reversible Entrapment of Salt-Hydrate-Based Thermal Energy Storage Materials

ACS Appl Eng Mater. 2023 Dec 8;2(3):553-562. doi: 10.1021/acsaenm.3c00522. eCollection 2024 Mar 22.

Abstract

One of the challenges preventing wide use of inorganic salt hydrate phase change materials (PCMs) is their low viscosity above their melting point, leading to leakage, phase segregation, and separation from heat exchanger surfaces in thermal management applications. The development of a broad strategy for using polymers that provide tunable, temperature-reversible shape stabilization of a variety of salt hydrates by using the lowest possible polymer concentrations is hindered by differences in solubility and gelation behavior of polymers with change in the type of ion. This work addressed the challenge of creating robust, temperature-responsive shape-stabilizing polymer gels (i.e., salogels) using a low cost PCM, calcium chloride hexahydrate (CaCl2·6H2O, CCH). Due to the extremely high (9 M) concentration of chloride ions and the tendency to salting-out polymer chains, the previous strategy of using single-polymer salogels was not successful. Thus, this work introduced a strategy of using two polymers, poly(vinyl alcohol) and ultrahigh molecular weight polyacrylamide (PVA and PAAm, respectively), along with borax as a cross-linker to achieve temperature-reversible, shape-stable salogels. This system resulted in robust salogels whose gel-to-sol transition temperature (Tgel) was tunable within an application-relevant range of gelation temperature (30-80 °C). This behavior was enabled by a synergistic combination of dynamic covalent cross-links between PVA units and entanglements of PAAm chains which were combined into a single hybrid network. The hybrid salogels had <5 wt % polymer content, maintaining ∼95% of the heat of fusion of the pure PCM. Importantly, the noncovalent nature of gelation supported thermo-reversibility of gelation, shape stability, and retention of thermal properties over 50 melting/crystallization cycles.

Publication types

  • Review