An Analytical Mechanics Model for the Rotary Sliding Triboelectric Nanogenerator

Micromachines (Basel). 2024 Mar 9;15(3):371. doi: 10.3390/mi15030371.

Abstract

In recent years, global attention towards new energy has surged due to increasing energy demand and environmental concerns. Researchers have intensified their focus on new energy, leading to advancements in technologies like triboelectrification, which harnesses energy from the environment. The invention of the triboelectric nanogenerator (TENG) has led to new possibilities, with the rotary sliding TENG standing out for its superior performance. However, understanding its mechanical behavior remains a challenge, potentially leading to structural issues. This paper introduces a novel analytical mechanics model to analyze the mechanical performance of the stator of the rotary sliding TENG, offering a new analytical solution. The solution also presents an innovative approach to solving axisymmetric problems in elasticity theory since it challenges a traditional assumption that the stress function depends solely on the radial coordinate, proposing a new stress function to derive a more general solution, supplementing the classical approach in the theory of elasticity. Through the obtained solutions, the mechanical characteristics of the rotary sliding TENG during operation are analyzed. A clearer relationship between mechanical characteristics and electrical output is expected to provide a theoretical basis for the design of the rotary sliding TENG.

Keywords: axisymmetric problem; elasticity; stress function; triboelectric nanogenerator.