The Effect of Different System Parameters on the Movement of Microbial Cells Using Light-Induced Dielectrophoresis

Micromachines (Basel). 2024 Feb 29;15(3):342. doi: 10.3390/mi15030342.

Abstract

The manipulation of single particles remains a topic of interest with many applications. Here we characterize the impact of selected parameters on the motion of single particles thanks to dielectrophoresis (DEP) induced by visible light, in a technique called Light-induced Dielectrophoresis, or LiDEP, also known as optoelectronic tweezers, optically induced DEP, and image-based DEP. Baker's yeast and Candida cells are exposed to an electric field gradient enabled by shining a photoconductive material with a specific pattern of visible light, and their response is measured in terms of the average cell velocity towards the gradient. The impact on cell velocity when varying the shape and color of the light pattern, as well as the distance from the cell to the pattern, is presented. The experimental setup featured a commercial light projector featuring digital light processing (DLP) technology but mechanically modified to accommodate a 40× microscope objective lens. The minimal resolution achieved on the light pattern was 8 µm. Experimental results show the capability for single cell manipulation and the possibility of using different shapes, colors, and distances to determine the average cell velocity.

Keywords: dielectrophoresis; electric; light; microbial manipulation; motion; particle.

Grants and funding

This research received no external funding.