A Fast Transient Response Capacitor-Less LDO with Transient Enhancement Technology

Micromachines (Basel). 2024 Feb 22;15(3):299. doi: 10.3390/mi15030299.

Abstract

This paper proposes a fast transient load response capacitor-less low-dropout regulator (CL-LDO) for digital analog hybrid circuits in the 180 nm process, capable of converting input voltages from 1.2 V to 1.8 V into an output voltage of 1 V. The design incorporates a rail-to-rail input and push-pull output (RIPO) amplifier to enhance the gain while satisfying the requirement for low power consumption. A super source follower buffer (SSFB) with internal stability is introduced to ensure loop stability. The proposed structure ensures the steady-state performance of the LDO without an on-chip capacitor. The auxiliary circuit, or transient enhancement circuit, does not compromise the steady-state stability and effectively enhances the transient performance during sudden load current steps. The proposed LDO consumes a quiescent current of 47 µA and achieves 25 µV/mA load regulation with a load current ranging from 0 to 20 mA. The simulation results demonstrate that a settling time of 0.2 µs is achieved for load steps ranging from 0 mA to 20 mA, while a settling time of 0.5 µs is attained for load steps ranging from 20 mA to 0 mA, with an edge time of 0.1 µs.

Keywords: capacitor-less; low dropout regulator; super source follower; transient enhancement circuit.

Grants and funding

This research received no external funding.