Radiological Outcomes of Magnetically Controlled Growing Rods for the Treatment of Children with Various Etiologies of Early-Onset Scoliosis-A Multicenter Study

J Clin Med. 2024 Mar 7;13(6):1529. doi: 10.3390/jcm13061529.

Abstract

Background: The management of spinal deformities diagnosed before the age of 10 is critical due to the child's development, skeletal system, and growth mechanism. Magnetically controlled growing rods (MCGRs) are a surgical treatment option for the growing spine. The aim of this study was to analyze the radiological findings of patients treated with MCGRs for early-onset scoliosis (EOS) of various etiologies. We hypothesized that the MCGRs could provide acceptable long-term radiographic results, such as an increase in the T1-T12 and T1-S1 height and significant overall deformity correction. Methods: We retrospectively reviewed 161 EOS patients with a combined total of 302 MCGRs inserted at five institutions between 2016 and 2022 with a mean follow-up of at least two years. The Cobb angle of the major curve (MC), thoracic kyphosis (TK), lumbar lordosis (LL), and T1-T12 and T1-S1 height measurements were assessed before, after, and during the follow-up. Results: Among the 90 female and 71 male patients, there were 51 neurological, 42 syndromic, 58 idiopathic, and ten congenital scoliosis etiologies. Of the patients, 73 were aged under six years old. The mean follow-up time was 32.8 months. The mean age at placement of the MCGRs was 7 years and that at the last follow-up after fusion surgery was 14.5 years. The mean MC before the initial surgery was 86.2°; following rod implantation, it was 46.9°, and at the last follow-up visit, it was 45.8°. The mean correction rate among the etiology subgroups was from 43% to 50% at follow-up. The mean TK was noted as 47.2° before MCGR implantation, 47.1° after MCGR placement, and 44.5° at the last follow-up visit. The mean T1-T12 height increased by 5.95 mm per year, with a mean T1-S1 height of 10.1 mm per year. Conclusions: MCGR treatment allowed for an average correction of the curvature by 50% during the period of lengthening, while controlling any deformity and growth of the spine, with a significant increase in the T1-T12 and T1-S1 values during the observation period. MCGR treatment in EOS carries a risk of complications. While congenital and syndromic EOS often have short and less flexible curves in those groups of patients, single rods can be as effective and safe. Definitive fusion results in the mean final coronal correction between the start of MCGR treatment and after undergoing PSF of approximately 70%. The mean T1-T12 spinal height increased by 75 mm, while the T1-S1 spinal height gained a mean of 97 mm.

Keywords: EOS; MCGR; early-onset scoliosis; growing rods; juvenile scoliosis; magnetically controlled growing rods; pediatric spinal deformity.

Grants and funding

This research received no external funding.