Exosomes as Promising Therapeutic Tools for Regenerative Endodontic Therapy

Biomolecules. 2024 Mar 11;14(3):330. doi: 10.3390/biom14030330.

Abstract

Pulpitis is a common and frequent disease in dental clinics. Although vital pulp therapy and root canal treatment can stop the progression of inflammation, they do not allow for genuine structural regeneration and functional reconstruction of the pulp-dentin complex. In recent years, with the development of tissue engineering and regenerative medicine, research on stem cell-based regenerative endodontic therapy (RET) has achieved satisfactory preliminary results, significantly enhancing its clinical translational prospects. As one of the crucial paracrine effectors, the roles and functions of exosomes in pulp-dentin complex regeneration have gained considerable attention. Due to their advantages of cost-effectiveness, extensive sources, favorable biocompatibility, and high safety, exosomes are considered promising therapeutic tools to promote dental pulp regeneration. Accordingly, in this article, we first focus on the biological properties of exosomes, including their biogenesis, uptake, isolation, and characterization. Then, from the perspectives of cell proliferation, migration, odontogenesis, angiogenesis, and neurogenesis, we aim to reveal the roles and mechanisms of exosomes involved in regenerative endodontics. Lastly, immense efforts are made to illustrate the clinical strategies and influencing factors of exosomes applied in dental pulp regeneration, such as types of parental cells, culture conditions of parent cells, exosome concentrations, and scaffold materials, in an attempt to lay a solid foundation for exploring and facilitating the therapeutic strategy of exosome-based regenerative endodontic procedures.

Keywords: exosomes; pulpitis; pulp–dentin complex regeneration; regenerative endodontic therapy; stem cells.

Publication types

  • Review

MeSH terms

  • Dental Pulp
  • Exosomes*
  • Regeneration
  • Regenerative Endodontics* / methods
  • Regenerative Medicine