Methods to Calculate Entropy Generation

Entropy (Basel). 2024 Mar 7;26(3):237. doi: 10.3390/e26030237.

Abstract

Entropy generation, formulated by combining the first and second laws of thermodynamics with an appropriate thermodynamic potential, emerges as the difference between a phenomenological entropy function and a reversible entropy function. The phenomenological entropy function is evaluated over an irreversible path through thermodynamic state space via real-time measurements of thermodynamic states. The reversible entropy function is calculated along an ideal reversible path through the same state space. Entropy generation models for various classes of systems-thermal, externally loaded, internally reactive, open and closed-are developed via selection of suitable thermodynamic potentials. Here we simplify thermodynamic principles to specify convenient and consistently accurate system governing equations and characterization models. The formulations introduce a new and universal Phenomenological Entropy Generation (PEG) theorem. The systems and methods presented-and demonstrated on frictional wear, grease degradation, battery charging and discharging, metal fatigue and pump flow-can be used for design, analysis, and support of diagnostic monitoring and optimization.

Keywords: entropy generation; non-equilibrium thermodynamics; phenomenology; second law; thermodynamic potentials.

Grants and funding

This research received no external funding.