Therapeutic targeting of apoptosis in chronic lymphocytic leukemia

Semin Hematol. 2024 Feb 7:S0037-1963(24)00015-5. doi: 10.1053/j.seminhematol.2024.01.015. Online ahead of print.

Abstract

Therapeutic targeting of apoptosis with small molecule B-cell lymphoma 2 (BCL-2) inhibition with venetoclax is highly efficacious in CLL, leading to sustained deep responses, particularly among patients with treatment-naïve disease with favorable prognostic markers. Patients with unfavorable genetic characteristics such as TP53 aberration and unmutated IGHV may also derive durable benefits, but their remission duration after time-limited venetoclax-containing combination therapy is shorter, particularly in patients with relapsed/refractory disease. Emerging data indicate that the context of disease progression after initial treatment with venetoclax may define the success of re-treatment with venetoclax. Specifically, continuous venetoclax exposure may select for resistant disease due to genetic mechanisms such as BCL2 mutations and functional resistance mechanisms such as hyperphosphorylation of BCL-2 family proteins, which decrease the affinity of venetoclax binding to the target or lead to increased MCL-1 dependence and concomitant decrease in BCL-2 dependence. These patients may be best served by switching to a different class of targeted agents at the time of progression. In contrast, relapsed CLL that arises while being off therapy after a period of time-limited venetoclax-based regimens maintains sensitivity to re-treatment with venetoclax for the majority of patients. Novel strategies related to therapeutic targeting of apoptosis include next-generation BCL-2 inhibitors with improved potency and pharmacokinetic profiles, direct targeting of anti-apoptotic BH3 family proteins beyond BCL-2 such as MCL-1, and indirect targeting of MCL-1 through mechanisms such as small molecule cyclin-dependent kinase 9 inhibitors.

Keywords: B-cell lymphoma 2; Chronic lymphocytic leukemia; apoptosis; minimal residual disease; venetoclax.