Basin scale monitoring of microplastics and phthalates in sediments from the Persian Gulf and the Gulf of Makran using GIS-based algorithms: Insights towards spatial variation and potential risk assessment

Sci Total Environ. 2024 Jun 1:927:171950. doi: 10.1016/j.scitotenv.2024.171950. Epub 2024 Mar 26.

Abstract

Information on sedimentary microplastics and phthalates has been restricted to the coastal regions of the Persian Gulf and the Gulf of Makran. Our basin-wide study monitored their levels, spatial behaviors, and potential risks using GIS-based techniques. Microplastics and phthalates ranged from 5 to 75 particles/kg d.w and 0.004-1.219 μg g-1 d.w, respectively. Microplastics were in the size category of 100 μm to 3 mm, and black microfibers (< 1 mm) and high-density polymers were dominant. The total number of microplastics was between 356.333 × 1012 and 469.075 × 1012 particles in the surface sediments of the studied regions (confidence interval = 99 %). Diethylhexyl phthalate (DEHP) and Di-isobutyl phthalate contributed 88 % of detected phthalates. Significant correlations among microplastic abundance, total phthalates, and DEHP were distinguished (p < 0.05). Overall, the findings reiterated the widespread presence of microplastics and a potential link between phthalates and microplastics. Semi-variogram, cluster Voronoi polygons, and Trend analysis identified spatial outliers and major deposition sites of microplastics and phthalates and consequently outlined the localities where upcoming studies should be concentrated. A hotspot of potential risks was marked using Fuzzy logic and GIS-based algorithms in the Sea of Makran, covering an area equal to 342. 99 km2.

Keywords: Microfibers; Phthalates esters; Spatial outliers; Trend analysis; Voronoi polygons.