THC and sperm: Impact on fertilization capability, pre-implantation in vitro development and epigenetic modifications

PLoS One. 2024 Mar 27;19(3):e0298697. doi: 10.1371/journal.pone.0298697. eCollection 2024.

Abstract

Global cannabis use has risen 23% since 2010, with 209 million reported users, most of whom are males of reproductive age. Delta-9-tetrahydrocannabinol (THC), the main psychoactive phytocannabinoid in cannabis, disrupts pro-homeostatic functions of the endocannabinoid system (ECS) within the male reproductive system. The ECS is highly involved in regulating morpho-functional and intrinsic sperm features that are required for fertilization and pre-implantation embryo development. Previous work by our group demonstrated that THC altered sperm capacitation and the transcriptome, including several fertility-associated microRNAs (miRs). Despite the prevalent use of cannabis among males of reproductive age, clinical and pre-clinical research investigating the impact of paternal cannabis on sperm function and the outcomes of artificial reproductive technologies (ARTs) remains inconclusive. Therefore, the present study investigates the impact of in vitro THC exposure on morpho-functional and intrinsic sperm functions, including contributions to embryo development following IVF. Bovine sperm were used as a translational model for human and treated with concentrations of THC that reflect plasma levels after therapeutic (0.032μM), and low (0.32μM)-high (4.8μM) recreational cannabis use. After 6-hours of treatment, THC did not alter the acrosomal reaction, but 4.8μM significantly reduced mitochondrial membrane potential (MMP) (p<0.05), primarily through agonistic interactions with CB-receptors. Fertilization of bovine oocytes with THC-treated sperm did not alter developmental rates, but blastocysts generated from sperm treated with 0.32-4.8μM THC had fewer trophoblasts (p<0.05), while blastocysts generated from sperm exposed to any concentration of THC had fewer cells in the inner cell mass (ICM), particularly within the 0.032μM group (p<0.001). Fertility associated miRs, including miR-346, miR-324, miR-33b, and miR-34c were analyzed in THC-exposed sperm and associated blastocysts generated by IVF, with lower levels of miRs-346, -324, and -33b found in sperm treated with 0.32μM THC, while miR-34c levels were higher in sperm treated with 0.032μM THC (p<0.05). Levels of miR-346 were also lower in sperm treated with 0.032μM THC, but higher in blastocysts generated from sperm exposed to 0.32μM THC (p<0.05). Our findings suggest that THC may alter key morpho-functional and epigenetic sperm factors involved in fertilization and embryo development. This is the first study to demonstrate that sperm exposed to THC in vitro negatively affects embryo quality following IVF.

MeSH terms

  • Animals
  • Cattle
  • Embryonic Development / genetics
  • Endocannabinoids
  • Epigenesis, Genetic
  • Female
  • Fertilization in Vitro*
  • Humans
  • Male
  • MicroRNAs* / genetics
  • Semen
  • Sperm Capacitation
  • Spermatozoa

Substances

  • MicroRNAs
  • Endocannabinoids
  • MIRN324 microRNA, human
  • MIRN346 microRNA, human

Grants and funding

The author(s) received no specific funding for this work.