Spacer Conformation Induced Multiple Hydrogen Bonds in 2D Perovskite toward Highly Efficient Optoelectronic Devices

Adv Mater. 2024 Mar 27:e2313889. doi: 10.1002/adma.202313889. Online ahead of print.

Abstract

Two-dimensional (2D) Dion-Jacobson (DJ) perovskites typically outperform Ruddlesden-Popper (RP) analogs in terms of photodetection (PD). However, the mechanism behind this enhanced performance remains elusive. Theoretical calculations for elucidating interlayer spacer conformation-induced multiple hydrogen bonds in 2D perovskite are presented, along with the synthesis of DPAPbBr4 (DPB) single crystals (SCs) and their PD properties under X-ray/ultraviolet (UV) excitation. The high-quality DPB SC enhances PD with exceptional photoresponse attributes, including a high on/off ratio (4.89 × 104), high responsivity (2.44 A W⁻1), along with large dynamic linear range (154 dB) and low detection limit (7.1 nW cm⁻2), which are currently the best results among 2D perovskite SC detectors, respectively. Importantly, high-resolution images are obtained under UV illumination with weak light levels. The SC X-ray detector exhibits a high sensitivity of 663 µC Gyair1 cm-2 at 10 V and a detection limit of 1.44 µGyair s⁻1. This study explores 2D DJ perovskites for efficient and innovative optoelectronic applications.

Keywords: X‐ray detection; large linear dynamic range; multiple hydrogen bonds; spacer conformation; weak‐light imaging.