The Role of Plant Defense Signaling Pathways in Phytoplasma-Infected and Uninfected Aster Leafhoppers' Oviposition, Development, and Settling Behavior

J Chem Ecol. 2024 Mar 26. doi: 10.1007/s10886-024-01488-9. Online ahead of print.

Abstract

In plant-microbe-insect systems, plant-mediated responses involve the regulation and interactions of plant defense signaling pathways of phytohormones jasmonic acid (JA), ethylene (ET), and salicylic acid (SA). Phytoplasma subgroup 16SrI is the causal agent of Aster Yellows (AY) disease and is primarily transmitted by populations of aster leafhoppers (Macrosteles quadrilineatus Forbes). Aster Yellows infection in plants is associated with the downregulation of the JA pathway and increased leafhopper oviposition. The extent to which the presence of intact phytohormone-mediated defensive pathways regulates aster leafhopper behavioral responses, such as oviposition or settling preferences, remains unknown. We conducted no-choice and two-choice bioassays using a selection of Arabidopsis thaliana lines that vary in their defense pathways and repeated the experiments using AY-infected aster leafhoppers to evaluate possible differences associated with phytoplasma infection. While nymphal development was similar among the different lines and groups of AY-uninfected and AY-infected insects, the number of offspring and individual female egg load of AY-uninfected and AY-infected insects differed in lines with mutated components of the JA and SA signaling pathways. In most cases, AY-uninfected insects preferred to settle on wild-type (WT) plants over mutant lines; no clear pattern was observed in the settling preference of AY-infected insects. These findings support previous observations in other plant pathosystems and suggest that plant signaling pathways and infection with a plant pathogen can affect insect behavioral responses in more than one manner. Potential differences with previous work on AY could be related to the specific subgroup of phytoplasma involved in each case.

Keywords: Arabidopsis thaliana; Aster Yellows; Cicadellidae; Jasmonic acid; Phytohormones; Phytoplasmas; Salicylic acid.