Strongly Polarized π-Extended 1,4-Dihydropyrrolo[3,2- b]pyrroles Fused with Tetrazolo[1,5- a]quinolines

J Org Chem. 2024 Apr 5;89(7):4657-4672. doi: 10.1021/acs.joc.3c02916. Epub 2024 Mar 26.

Abstract

A straightforward route to 1,4-dihydropyrrolo[3,2-b]pyrroles comprised of two electron-withdrawing quinoline or tetrazolo[1,5-a]quinoline scaffolds has been developed. The versatile multicomponent reaction affording 1,4-dihydropyrrolo[3,2-b]pyrroles combined with intramolecular direct arylation enables assembly of these products in just three steps from anilines with overall yields exceeding 30%. The planarized, ladder-type heteroacenes possess up to 14 conjugated rings. These nominally quadrupolar materials exhibit efficient fluorescence with wavelengths spanning most of the visible spectrum from green-yellow for the dyes possessing biaryl bridges and orange-red for the fully fused systems. In many cases, the fluorescence quantum yields are large, the solvatofluorochromic effects are strong, and the fluorescence is maintained even in crystalline state. Analysis of the electronic structure of these molecular architectures using quantum chemical methods suggests that the character and position of the flanking heterocycle determine the shape of HOMO and LUMO and their extension to N-aryl substituents, influencing the values of molar absorption coefficient. An experimental study of the two-photon absorption (2PA) properties has revealed that it occurs in the 700-800 nm range with apparent deviation from the Laporte parity selection rule, which may be attributed to Hertzberg-Teller contribution to vibronically allowed 2PA transition.