Fusobacterium nucleatum subsp. polymorphum recovered from malignant and potentially malignant oral disease exhibit heterogeneity in adhesion phenotypes and adhesin gene copy number, shaped by inter-subspecies horizontal gene transfer and recombination-derived mosaicism

Microb Genom. 2024 Mar;10(3):001217. doi: 10.1099/mgen.0.001217.

Abstract

Fusobacterium nucleatum is an anaerobic commensal of the oral cavity associated with periodontitis and extra-oral diseases, including colorectal cancer. Previous studies have shown an increased relative abundance of this bacterium associated with oral dysplasia or within oral tumours. Using direct culture, we found that 75 % of Fusobacterium species isolated from malignant or potentially malignant oral mucosa were F. nucleatum subsp. polymorphum. Whole genome sequencing and pangenome analysis with Panaroo was carried out on 76 F. nucleatum subsp. polymorphum genomes. F. nucleatum subsp. polymorphum was shown to possesses a relatively small core genome of 1604 genes in a pangenome of 7363 genes. Phylogenetic analysis based on the core genome shows the isolates can be separated into three main clades with no obvious genotypic associations with disease. Isolates recovered from healthy and diseased sites in the same patient are generally highly related. A large repertoire of adhesins belonging to the type V secretion system (TVSS) could be identified with major variation in repertoire and copy number between strains. Analysis of intergenic recombination using fastGEAR showed that adhesin complement is shaped by horizontal gene transfer and recombination. Recombination events at TVSS adhesin genes were not only common between lineages of subspecies polymorphum, but also between different subspecies of F. nucleatum. Strains of subspecies polymorphum with low copy numbers of TVSS adhesin encoding genes tended to have the weakest adhesion to oral keratinocytes. This study highlights the genetic heterogeneity of F. nucleatum subsp. polymorphum and provides a new framework for defining virulence in this organism.

Keywords: Fusobacterium nucleatum; adhesins; type V secretion system.

MeSH terms

  • Fusobacterium / genetics
  • Gene Dosage
  • Gene Transfer, Horizontal*
  • Humans
  • Mosaicism*
  • Phenotype
  • Phylogeny

Supplementary concepts

  • Fusobacterium nucleatum subsp. polymorphum