Altered placental immune cell composition and gene expression with isolated fetal spina bifida

Am J Reprod Immunol. 2024 Mar;91(3):e13836. doi: 10.1111/aji.13836.

Abstract

Problem: Fetal spina bifida (SB) is more common in pregnant people with folate deficiency or anomalies of folate metabolism. It is also known that fetuses with SB have a higher risk of low birthweight, a condition that is typically placental-mediated. We therefore hypothesized that fetal SB would associate with altered expression of key placental folate transporters and an increase in Hofbauer cells (HBCs), which are folate-dependent placental macrophages.

Method of study: Folate receptor-α (FRα), proton coupled folate receptor (PCFT), and reduced folate carrier (RFC) protein localization and expression (immunohistochemistry) and HBC phenotypes (HBC abundance and folate receptor-β [FRβ] expression; RNA in situ hybridization) were assessed in placentae from fetuses with SB (cases; n = 12) and in term (n = 10) and gestational age (GA) - and maternal body mass index - matched (n = 12) controls without congenital anomalies.

Results: Cases had a higher proportion of placental villous cells that were HBCs (6.9% vs. 2.4%, p = .0001) and higher average HBC FRβ expression (3.2 mRNA molecules per HBC vs. 2.3, p = .03) than GA-matched controls. HBCs in cases were largely polarized to a regulatory phenotype (median 92.1% of HBCs). In sex-stratified analyses, only male cases had higher HBC levels and HBC FRβ expression than GA-matched controls. There were no differences between groups in the total percent of syncytium and stromal cells that were positive for FRα, PCFT, or RFC protein immunolabeling.

Conclusions: HBC abundance and FRβ expression by HBCs are increased in placentae of fetuses with SB, suggesting immune-mediated dysregulation in placental phenotype, and could contribute to SB-associated comorbidities.

Keywords: Hofbauer cells; folate; neural tube defects; placenta; spina bifida.

MeSH terms

  • Female
  • Folic Acid / metabolism
  • Gene Expression
  • Humans
  • Male
  • Phenotype
  • Placenta* / metabolism
  • Pregnancy
  • Spinal Dysraphism* / genetics
  • Spinal Dysraphism* / metabolism

Substances

  • Folic Acid