Developing the E. coli platform for efficient production of UMP-derived chemicals

Metab Eng. 2024 Mar 24:83:61-74. doi: 10.1016/j.ymben.2024.03.004. Online ahead of print.

Abstract

5-Methyluridine (5-MU) is a prominent intermediate for industrial synthesis of several antiviral-drugs, however, its availability over the past decades has overwhelmingly relied on chemical and enzymatic strategies. Here, we have realized efficient production of 5-MU in E. coli, for the first time, via a designer artificial pathway consisting of a two-enzyme cascade (UMP 5-methylase and phosphatase). More importantly, we have engineered the E. coli cell factory to boost 5-MU production by systematic evaluation of multiple strategies, and as a proof of concept, we have further developed an antibiotic-free fermentation strategy to realize 5-MU production (10.71 g/L) in E. coli MB229 (a ΔthyA strain). Remarkably, we have also established a versatile and robust platform with exploitation of the engineered E. coli for efficient production of diversified UMP-derived chemicals. This study paves the way for future engineering of E. coli as a synthetic biology platform for acceleratively accessing UMP-derived chemical diversities.

Keywords: 5-Methyluridine; Antiviral-drugs; Chemical diversities; Designer artificial pathway; E. coli; Synthetic biology; UMP-derived chemicals.