Multi-year in situ hydrogeochemical monitoring of hard rock lithium mine tailings in a large-scale experimental pile

J Environ Manage. 2024 Apr:356:120602. doi: 10.1016/j.jenvman.2024.120602. Epub 2024 Mar 22.

Abstract

Spodumene, a lithian mineral found in granitic pegmatites, is a major source of lithium. In situ, multi-year and large-scale (>10s of tons) predictive hydrogeochemical studies can be of great value for informing mine waste rock and tailings management, not least because the material is exposed to the actual climate where it is meant to be stored. However, such studies are rare given their cost and size, and previous ones have focused mainly on sulfide-bearing materials. An experimental field cell filled with spodumene beneficiation tailings was built at the Whabouchi lithium mine site in northern Québec (Canada) and monitored during four consecutive years. In parallel, column laboratory kinetic testing on the same material was conducted for water quality parameters to compare the effect of testing scales on the geochemical behavior. Geochemical results and release rates were overall similar between laboratory and field, and consistent with previously published laboratory results for materials from the same site. The leachates were neutral to slightly alkaline, with ions from feldspars (Ca > Na > K) and residual spodumene (Li) being notable solutes. Concentrations for most solutes surveyed remained higher in the field after four years than in columns at the end of the experiment. One major difference between laboratory and field was a brief (less than 2 years) increase in iron concentrations from the field cell, resulting in Fe-oxyhydroxides precipitation, that was not observed in laboratory. The source of this iron is arguably residual ferrosilicon (used for dense medium separation) and this difference is attributed to the different testing conditions and configurations in the laboratory versus in situ. Field hydrogeological results highlight strong seasonal patterns and the rapid response of this sand-like, sulfide-poor material to ambient temperature changes and wetting-drying events. The tailings both wet and drain rapidly and easily given their water retention curve and the range of matrix suctions recorded during frost-free months. Net infiltration through the tailings was estimated to represent 55% of total precipitation in summer (June-October) 2021. This study provides a comprehensive assessment of the environmental behavior of hard rock lithium mine tailings under real, sub-arctic climatic conditions and outlines similarities and differences between laboratory- and field-generated geochemical results.

Keywords: Geochemistry; Hydrogeology; Lithium; Mine drainage; Scale-up; Spodumene.

MeSH terms

  • Environmental Monitoring / methods
  • Iron
  • Lithium*
  • Minerals* / analysis
  • Sulfides

Substances

  • spodumene
  • Lithium
  • Minerals
  • Iron
  • Sulfides