Multiview hyperedge-aware hypergraph embedding learning for multisite, multiatlas fMRI based functional connectivity network analysis

Med Image Anal. 2024 May:94:103144. doi: 10.1016/j.media.2024.103144. Epub 2024 Mar 19.

Abstract

Recently, functional magnetic resonance imaging (fMRI) based functional connectivity network (FCN) analysis via graph convolutional networks (GCNs) has shown promise for automated diagnosis of brain diseases by regarding the FCNs as irregular graph-structured data. However, multiview information and site influences of the FCNs in a multisite, multiatlas fMRI scenario have been understudied. In this paper, we propose a Class-consistency and Site-independence Multiview Hyperedge-Aware HyperGraph Embedding Learning (CcSi-MHAHGEL) framework to integrate FCNs constructed on multiple brain atlases in a multisite fMRI study. Specifically, for each subject, we first model brain network as a hypergraph for every brain atlas to characterize high-order relations among multiple vertexes, and then introduce a multiview hyperedge-aware hypergraph convolutional network (HGCN) to extract a multiatlas-based FCN embedding where hyperedge weights are adaptively learned rather than employing the fixed weights precalculated in traditional HGCNs. In addition, we formulate two modules to jointly learn the multiatlas-based FCN embeddings by considering the between-subject associations across classes and sites, respectively, i.e., a class-consistency module to encourage both compactness within every class and separation between classes for promoting discrimination in the embedding space, and a site-independence module to minimize the site dependence of the embeddings for mitigating undesired site influences due to differences in scanning platforms and/or protocols at multiple sites. Finally, the multiatlas-based FCN embeddings are fed into a few fully connected layers followed by the soft-max classifier for diagnosis decision. Extensive experiments on the ABIDE demonstrate the effectiveness of our method for autism spectrum disorder (ASD) identification. Furthermore, our method is interpretable by revealing ASD-relevant brain regions that are biologically significant.

Keywords: Autism; Functional connectivity; Graph convolution networks; Graph embedding; Hypergraph.

MeSH terms

  • Autism Spectrum Disorder*
  • Brain / diagnostic imaging
  • Brain Diseases*
  • Humans
  • Learning
  • Magnetic Resonance Imaging