Unlocking Agronutrient Resources: Sorption Strategies for sugar-energy industry waste

J Environ Manage. 2024 Apr:356:120634. doi: 10.1016/j.jenvman.2024.120634. Epub 2024 Mar 21.

Abstract

Vinasse and ash from sugarcane bagasse (SCB) are key byproducts in the sugar-energy industry. Vinasse is nutrient-rich but environmentally challenging, while sugarcane bagasse ash (SCBA) offers excellent adsorbent for treating effluents. This work aims to assess the effectiveness of SCBA in removing nitrogen (N) and potassium (K) nutrients from Vinasse. Simulated standard solutions of K2SO4 and (NH4)2HPO4 were used to mimic the nutrient concentrations in Vinasse and optimize experimental parameters such as adsorbent mass and contact time. Kinetic and isotherm models were also applied to elucidate the underlying adsorption mechanisms. Structural, morphological, and thermal analyses revealed the micro-mesoporous and heterogeneous nature of SCBA, primarily composed of SiO2 (quartz and cristobalite). The sorption assessment indicated the ideal conditions involved lower SCBA masses (2.5 g) and 6 h of contact time for the simulated standard solutions. The replicated conditions for Vinasse (at an adjusted sorption time of 24 h) demonstrated nutrient sorption and pH correction of the Vinasse, attributed to the alkaline nature of SCBA. Analysis of the sorption kinetic models for K+ and NH4+ revealed that SCBA interacts diffusively with the environment, not necessarily controlled by adsorption on active sites, indicating non-uniform characteristics. The sorption isotherms for K+ and NH4+ showed the non-linearized Freundlich model was the most suitable, indicating the adsorption sites with varying energy levels and a multilayer sorption process. In conclusion, we successfully demonstrated the sorption of nutrients from Vinasse by SCBA, enhancing the value of these residues and mitigating their environmental impact when used in agricultural applications.

Keywords: Adsorption; Biosorbent; Nutrients; Sugarcane bagasse ash; Vinasse.

MeSH terms

  • Adsorption
  • Cellulose / chemistry
  • Industrial Waste*
  • Saccharum* / chemistry
  • Silicon Dioxide
  • Sugars

Substances

  • Industrial Waste
  • Cellulose
  • Sugars
  • Silicon Dioxide