Aligned carbon nanotube-based electronics on glass wafer

Sci Adv. 2024 Mar 22;10(12):eadl1636. doi: 10.1126/sciadv.adl1636. Epub 2024 Mar 22.

Abstract

Carbon nanotubes (CNTs), due to excellent electronic properties, are emerging as a promising semiconductor for diverse electronic applications with superiority over silicon. However, until now, the supposed superiority of CNTs by "head-to-head" comparison within a well-defined voltage range remains unrealized. Here, we report aligned CNT (ACNT)-based electronics on a glass wafer and successfully develop a 250-nm gate length ACNT-based field-effect transistor (FET) with an almost identical transfer curve to a "90-nm" node silicon device, indicating a three- to four-generation superiority. Moreover, a record gate delay of 9.86 ps is achieved by our ring oscillator, which exceeds silicon even at a lower supply voltage. Furthermore, the fabrication of basic logic gates indicates the potential for further digital integrated circuits. All of these results highlight ACNT-based FETs on the glass wafer as an effective solution/platform for further development of CNT-based electronics.