Out of sight, but not out of season: Nitrifier distributions and population dynamics in a large oligotrophic lake

Environ Microbiol. 2024 Mar;26(3):e16616. doi: 10.1111/1462-2920.16616.

Abstract

Nitrification is an important control on the form and distribution of nitrogen in freshwater ecosystems. However, the seasonality of nitrogen pools and the diversity of organisms catalyzing this process have not been well documented in oligotrophic lakes. Here, we show that nitrogen pools and nitrifying organisms in Flathead Lake are temporally and vertically dynamic, with nitrifiers displaying specific preferences depending on the season. While the ammonia-oxidizing bacteria (AOB) Nitrosomonadaceae and nitrite-oxidizing bacteria (NOB) Nitrotoga dominate at depth in the summer, the ammonia-oxidizing archaea (AOA) Nitrososphaerota and NOB Nitrospirota become abundant in the winter. Given clear seasonality in ammonium, with higher concentrations during the summer, we hypothesize that the succession between these two nitrifying groups may be due to nitrogen affinity, with AOB more competitive when ammonia concentrations are higher and AOA when they are lower. Nitrifiers in Flathead Lake share more than 99% average nucleotide identity with those reported in other North American lakes but are distinct from those in Europe and Asia, indicating a role for geographic isolation as a factor controlling speciation among nitrifiers. Our study shows there are seasonal shifts in nitrogen pools and nitrifying populations, highlighting the dynamic spatial and temporal nature of nitrogen cycling in freshwater ecosystems.

MeSH terms

  • Ammonia
  • Archaea / genetics
  • Ecosystem
  • Lakes* / microbiology
  • Nitrification
  • Nitrites
  • Nitrogen
  • Nitrosomonadaceae*
  • Oxidation-Reduction
  • Phylogeny
  • Population Dynamics
  • Seasons

Substances

  • Ammonia
  • Nitrites
  • Nitrogen