Stereoselective synthesis and antiproliferative activity of allo-gibberic acid-based 1,3-aminoalcohol regioisomers

RSC Med Chem. 2024 Feb 12;15(3):874-887. doi: 10.1039/d3md00665d. eCollection 2024 Mar 20.

Abstract

A new library of allo-gibberic acid-based aminoalcohol regioisomers was synthesised stereoselectively starting from commercially available gibberellic acid, which yields allo-gibberic acid under mild acidic conditions. The successful formation of hydroxymethyl ketone derivative 5, by acid-mediated rearrangement of previously prepared epoxide, paved the way to obtain the desired 1,3-aminoalcohols through Schiff base formation. To obtain the desired regioisomers, the primary alcohol functionality of 5 was subjected to mesylation, then replaced with either primary amine or sodium azide. The formed azide derivative was subjected to either CuAAC reaction to obtain 1,2,3-triazoles or underwent Pd-catalysed hydrogenolysis to obtain primary aminoalcohol, which was further transformed into 1,3-aminoalcohols by reductive alkylation. All prepared aminoalcohols were identified in a satisfactory manner using modern spectroscopic techniques and assessed for their antiproliferative activity against a panel of human cancer cell lines. The antiproliferative effects of the prepared compounds were assayed by in vitro MTT method against a panel of human cancer cell lines (HeLa, SiHa, A2780, MCF-7 and MDA-MB-231). A significant difference was observed in the antiproliferative activity between the regioisomers. Some compounds exerted outstanding activities against the malignant cells with limited action on fibroblasts, indicating considerable cancer selectivity.