Individual distribution of muscle hypertrophy among hamstring muscle heads: Adding muscle volume where you need is not so simple

Scand J Med Sci Sports. 2024 Mar;34(3):e14608. doi: 10.1111/sms.14608.

Abstract

Purpose: The aim of this study was to determine whether a 9-week resistance training program based on high load (HL) versus low load combined with blood flow restriction (LL-BFR) induced a similar (i) distribution of muscle hypertrophy among hamstring heads (semimembranosus, SM; semitendinosus, ST; and biceps femoris long head, BF) and (ii) magnitude of tendon hypertrophy of ST, using a parallel randomized controlled trial.

Methods: A total of 45 participants were randomly allocated to one of three groups: HL, LL-BFR, and control (CON). Both HL and LL-BFR performed a 9-week resistance training program composed of seated leg curl and stiff-leg deadlift exercises. Freehand 3D ultrasound was used to assess the changes in muscle and tendon volume.

Results: The increase in ST volume was greater in HL (26.5 ± 25.5%) compared to CON (p = 0.004). No difference was found between CON and LL-BFR for the ST muscle volume (p = 0.627). The change in SM muscle volume was greater for LL-BFR (21.6 ± 27.8%) compared to CON (p = 0.025). No difference was found between HL and CON for the SM muscle volume (p = 0.178).There was no change in BF muscle volume in LL-BFR (14.0 ± 16.5%; p = 0.436) compared to CON group. No difference was found between HL and CON for the BF muscle volume (p = 1.0). Regarding ST tendon volume, we did not report an effect of training regimens (p = 0.411).

Conclusion: These results provide evidence that the HL program induced a selective hypertrophy of the ST while LL-BFR induced hypertrophy of SM. The magnitude of the selective hypertrophy observed within each group varied greatly between individuals. This finding suggests that it is very difficult to early determine the location of the hypertrophy among a muscle group.

Keywords: hamstring; individual hypertrophy; muscle volume; resistance training.

Publication types

  • Randomized Controlled Trial

MeSH terms

  • Hamstring Muscles* / diagnostic imaging
  • Humans
  • Hypertrophy
  • Muscle Strength / physiology
  • Muscle, Skeletal / physiology
  • Regional Blood Flow / physiology
  • Resistance Training* / methods
  • Tendons