Creep-free polyelectrolyte elastomer for drift-free iontronic sensing

Nat Mater. 2024 Mar 21. doi: 10.1038/s41563-024-01848-6. Online ahead of print.

Abstract

Artificial pressure sensors often use soft materials to achieve skin-like softness, but the viscoelastic creep of soft materials and the ion leakage, specifically for ionic conductors, cause signal drift and inaccurate measurement. Here we report drift-free iontronic sensing by designing and copolymerizing a leakage-free and creep-free polyelectrolyte elastomer containing two types of segments: charged segments having fixed cations to prevent ion leakage and neutral slippery segments with a high crosslink density for low creep. We show that an iontronic sensor using the polyelectrolyte elastomer barely drifts under an ultrahigh static pressure of 500 kPa (close to its Young's modulus), exhibits a drift rate two to three orders of magnitude lower than that of the sensors adopting conventional ionic conductors and enables steady and accurate control for robotic manipulation. Such drift-free iontronic sensing represents a step towards highly accurate sensing in robotics and beyond.