Ultrasensitive solid-state electrochemiluminescence sensor based on lotus root shaped carbon fiber, CdSe QDs and Fe3O4 synergically amplify Ru(bpy)32+ luminophore signal for detection of cyfluthrin

Mikrochim Acta. 2024 Mar 21;191(4):215. doi: 10.1007/s00604-024-06283-7.

Abstract

An efficient and innovative electrochemiluminescence (ECL) sensor was developed for trace detection of cyfluthrin. The sensor utilized materials such as lotus root shaped carbon fiber (Co CNFs), cadmium selenide quantum dots (CdSe QDs), and Fe3O4 to amplify Ru(bpy)32+ signals. Co CNFs, with its large specific surface area and porosity, served the purpose of not only enhancing the stability of the sensor by fixing CdSe QDs and Ru(bpy)32+ on the Co CNFs/GCE, but also facilitating electron transfer. CdSe QDs was involved in the luminescence reaction and collaborated with Ru(bpy)32+ to enhance the sensor's sensitivity, while Fe3O4 promoted electron transfer in the system due to its large surface area. The solid-state ECL sensor achieved satisfactory signal under the synergistic action of these components. The ECL signal of the sensor was quenched by cyfluthrin, and a favorable linear relationship was observed between the sensor and cyfluthrin in the concentration range 1 × 10-12 to 1 × 10-6 M. The detection limit of the sensor was 3.3 × 10-13 M (S/N = 3). The utilization of lotus root shaped carbon fiber, CdSe QDs, and Fe3O4 in the Ru(bpy)32+ system demonstrated a synergistic effect for cyfluthrin detection, presenting a new approach for the rapid determination analysis of pesticide residues in foods.

Keywords: Carbon nanofibers; CdSe QDs; Cyfluthrin; Electrochemiluminescence; Fe3O4.