Response of CRH system in brain and gill of marine medaka to seawater acidification

Fish Physiol Biochem. 2024 Mar 21. doi: 10.1007/s10695-024-01332-7. Online ahead of print.

Abstract

Corticotropin-releasing hormone (CRH) is mainly secreted by the hypothalamus to regulate stress when environmental factors change. Gills contact with water directly and may also secrete CRH to maintain local homeostasis. Ocean acidification changes water chemical parameters and is becoming an important environmental stressor for marine fish. The response of brain and gill CRH systems to ocean acidification remains unclear. In this study, marine medaka were exposed to CO2-acidified seawater (440 ppm, 1000 ppm, and 1800 ppm CO2) for 2 h, 4 h, 24 h, and 7 d, respectively. At 2 h and 4 h, the expression of crh mRNA in gills increased with increasing CO2 concentration. Crh protein is expressed mainly in the lamellae cells. crhbp and crhr1 expression also increased significantly. However, at 2 h and 4 h, acidification caused little changes in these genes and Crh protein expression in the brain. At 7 d, Crh-positive cells were detected in the hypothalamus; moreover, Crh protein expression in the whole brain increased. It is suggested that CRH autocrine secretion in gills is responsible for local acid-base regulation rather than systemic mobilization after short-term acidification stress, which may help the rapid regulation of body damage caused by environmental stress.

Keywords: Crh system; Gill; Hypothalamus; Ocean acidification.