Subcortical structure alteration in patients with drug-induced parkinsonism: Evidence from neuroimaging

IBRO Neurosci Rep. 2024 Mar 6:16:436-442. doi: 10.1016/j.ibneur.2024.03.001. eCollection 2024 Jun.

Abstract

Parkinson's Disease (PD) and Drug-induced parkinsonism (DIP) are the most common subtypes of parkinsonism, yet no studies have reported that the subcortical volume alterations in DIP patients. This study aimed to identify specific alterations of subcortical structures volume in DIP patients, and investigate association between the subcortical structure modifications and clinical symptoms. We recruited 27 PD patients, 25 DIP patients and 30 healthy controls (HCs). The clinical symptom-related parameters (Unified Parkinson's Disease Rating Scale, UPDRS) were evaluated. Structural imaging was performed on a 3.0 T scanner, and volumes of subcortical structures were obtained using FreeSurfer software. Analysis of covariance (ANCOVA) and partial correlation analysis were performed. DIP group had significantly smaller volume of the thalamus, pallidum, hippocampus and amygdala compared to HCs. ROC curve analysis demonstrated that the highest area under curve (AUC) value was in the right pallidum (AUC = 0.831) for evaluating the diagnostic efficacy in DIP from HCs. Moreover, the volumes of the putamen, hippocampus and amygdala were negatively correlated with UPDRSII in the DIP patients. The volume of the amygdala was negatively correlated with UPDRSIII. The present study provides novel information regarding neuroanatomical alteration of subcortical nuclei in DIP patients, suggesting that these methods might provide the basis for early diagnosis and differential diagnosis of DIP.

Keywords: Drug induced parkinsonism; Magnetic resonance imaging; Parkinson disease; Subcortical volume; UPDRS.