ERK-activated CK-2 triggers blastema formation during appendage regeneration

Sci Adv. 2024 Mar 22;10(12):eadk8331. doi: 10.1126/sciadv.adk8331. Epub 2024 Mar 20.

Abstract

Appendage regeneration relies on the formation of blastema, a heterogeneous cellular structure formed at the injury site. However, little is known about the early injury-activated signaling pathways that trigger blastema formation during appendage regeneration. Here, we provide compelling evidence that the extracellular signal-regulated kinase (ERK)-activated casein kinase 2 (CK-2), which has not been previously implicated in appendage regeneration, triggers blastema formation during leg regeneration in the American cockroach, Periplaneta americana. After amputation, CK-2 undergoes rapid activation through ERK-induced phosphorylation within blastema cells. RNAi knockdown of CK-2 severely impairs blastema formation by repressing cell proliferation through down-regulating mitosis-related genes. Evolutionarily, the regenerative role of CK-2 is conserved in zebrafish caudal fin regeneration via promoting blastema cell proliferation. Together, we find and demonstrate that the ERK-activated CK-2 triggers blastema formation in both cockroach and zebrafish, helping explore initiation factors during appendage regeneration.

MeSH terms

  • Animals
  • Regeneration* / genetics
  • Signal Transduction / genetics
  • Wound Healing
  • Zebrafish Proteins / genetics
  • Zebrafish Proteins / metabolism
  • Zebrafish* / metabolism

Substances

  • Zebrafish Proteins