Force-sensing treadmill gait analysis system can detect gait abnormalities in haemophilia patients without arthropathy

Haemophilia. 2024 Mar 20. doi: 10.1111/hae.14987. Online ahead of print.

Abstract

Background: Joint damage in patients with haemophilia (PwH) is commonly assessed by imaging, but few reports have described how structural changes in joints, for example, haemophilic arthropathy (HA)-affect gait ability.

Objectives: We evaluated gait function among PwH with HA, PwH without HA, and people without haemophilia (non-PwH) using a Zebris FDM-T treadmill (FDM-T), an easy-to-use gait assessment instrument with a force sensor matrix.

Methods: The following gait parameters were collected: centre of pressure trajectory intersection (COPi) anterior/posterior variability, COPi lateral variability, COPi anterior/posterior symmetry, COPi lateral symmetry, single-limb support line (SLSL) length, and SLSL variability. Participants walked at their typical gait speed. The physical function of the PwH was assessed by the Hemophilia Joint Health Score (HJHS). Parameters were compared among the three groups.

Results: Twelve PwH with HA, 28 PwH without HA, and 12 non-PwH were enrolled. Gait speed significantly differed between groups (non-PwH, 3.1 ± 0.7; PwH without HA, 2.0 ± 0.7; PwH with HA; 1.5 ± 0.4). The COPi anterior/posterior variability, COPi lateral variability, SLSL length, and SLSL variability were greater in the PwH groups than in the non-PwH group. The COPi lateral symmetry differed between PwH with HA and the other groups. The HJHS was not correlated with gait parameters among PwH with HA.

Conclusions: Gait parameters and speed were abnormal in both PwH with HA and PwH without HA. The FDM-T can be used to identify early stages of physical dysfunction that cannot be detected by conventional functional assessments such as the HJHS.

Keywords: frailty; gait analysis; haemophilia A; haemophilia B; joint diseases.