A kinetic dichotomy between mitochondrial and nuclear gene expression processes

Mol Cell. 2024 Apr 18;84(8):1541-1555.e11. doi: 10.1016/j.molcel.2024.02.028. Epub 2024 Mar 18.

Abstract

Oxidative phosphorylation (OXPHOS) complexes, encoded by both mitochondrial and nuclear DNA, are essential producers of cellular ATP, but how nuclear and mitochondrial gene expression steps are coordinated to achieve balanced OXPHOS subunit biogenesis remains unresolved. Here, we present a parallel quantitative analysis of the human nuclear and mitochondrial messenger RNA (mt-mRNA) life cycles, including transcript production, processing, ribosome association, and degradation. The kinetic rates of nearly every stage of gene expression differed starkly across compartments. Compared with nuclear mRNAs, mt-mRNAs were produced 1,100-fold more, degraded 7-fold faster, and accumulated to 160-fold higher levels. Quantitative modeling and depletion of mitochondrial factors LRPPRC and FASTKD5 identified critical points of mitochondrial regulatory control, revealing that the mitonuclear expression disparities intrinsically arise from the highly polycistronic nature of human mitochondrial pre-mRNA. We propose that resolving these differences requires a 100-fold slower mitochondrial translation rate, illuminating the mitoribosome as a nexus of mitonuclear co-regulation.

Keywords: LRPPRC; Leighs disease; RNA life cycle; gene regulation; genetic conflict; metabolic regulation; mitochondrial gene expression; mitochondrial translation; mitonuclear balance; organellular biogenesis; oxidative phosphorylation.

MeSH terms

  • DNA, Mitochondrial / genetics
  • DNA, Mitochondrial / metabolism
  • Humans
  • Mitochondria* / genetics
  • Mitochondria* / metabolism
  • Mitochondrial Proteins / metabolism
  • Mitochondrial Ribosomes* / metabolism
  • Oxidative Phosphorylation
  • Protein Biosynthesis

Substances

  • Mitochondrial Proteins
  • DNA, Mitochondrial