Lanosterol regulates abnormal amyloid accumulation in LECs through the mediation of cholesterol pathway metabolism

Biochem Biophys Rep. 2024 Mar 11:38:101679. doi: 10.1016/j.bbrep.2024.101679. eCollection 2024 Jul.

Abstract

Age-related cataract (ARC) is the predominant cause of global blindness, linked to the progressive aging of the lens, oxidative stress, perturbed calcium homeostasis, hydration irregularities, and modifications in crystallin proteins. Currently, surgical intervention remains the sole efficacious remedy, albeit carrying inherent risks of complications that may culminate in irreversible blindness. It is urgent to explore alternative, cost-effective, and uncomplicated treatment modalities for cataracts. Lanosterol has been widely reported to reverse cataracts, but the mechanism of action is not yet clear. In this study, we elucidated the mechanism through which lanosterol operates in the context of cataract reversal. Through the targeted suppression of sterol regulatory element-binding protein 2 (SREBP2) followed by lanosterol treatment, we observed the restoration of lipid metabolism disorders induced by SREBP2 knockdown in lens epithelial cells (LECs). Notably, lanosterol exhibited the ability to effectively counteract amyloid accumulation and cellular apoptosis triggered by lipid metabolism disorders. In summary, our findings suggest that lanosterol, a pivotal intermediate in lipid metabolism, may exert its therapeutic effects on cataracts by influencing lipid metabolism. This study shed light on the treatment and pharmaceutical development targeting Age-related Cataracts (ARC).

Keywords: Age-related cataract; Amyloid; Lanosterol; Lipid metabolism.